Mound System Pressure Distribution Worksheet

Number of bedrooms \qquad
Septic tank size \qquad Minimum 1000 gallons

Dosing tank size \qquad Minimum 800 gallons or 1 bedroom smaller than septic tank size whichever is larger

Filter: gravity(in septic tank) \qquad or pressure(on delivery line)

Make \qquad Model \qquad

"- 70'"- \&\&/,- "\&/+'6 \& \&)) ','\# \&

Aggregate Bed and Basal Area Dimensions

Total aggregate bed area: $125 \mathrm{ft}^{2}$ per bedroom X number of bedrooms \qquad $=$ \qquad ft^{2}

Maximum Bed width is determined by formula in state rule. Refer to chart provided by ECHD. Max. Width= \qquad ft .

Total Agg bed area \qquad $\mathrm{ft}^{2} \div$ maximum width \qquad $\mathrm{ft}=\mathrm{Agg}$ bed length \qquad ft.

Minimum Basal Area: \qquad ft^{2} per bedroom(from onsite form) x \qquad number of bedrooms= \qquad ft^{2} total

Minimum Basal Width: Choose Flat or Sloping site
\square Flat Site 0\% to $1 / 2 \%$ Slope
Minimum Width: Basal area \qquad \div Agg bed length \qquad $=$ ft or Agg bed width \qquad $+$ 14 ft whichever is greater. Width=___ft

Sloping site greater than $1 / 2 \%$ to 6% slope
Minimum Width: Basal area \qquad \div Agg bed length \qquad $=$ \qquad ft or Agg bed width \qquad +9 ft whichever is greater. Width= \qquad ft

Summary:
Aggregate Bed is \qquad ft wide x \qquad ft long

Basal Area is \qquad ft wide x \qquad ft long

Pressure Distribution Network

Laterals are spaced 18 inches in from the ends of aggregate bed and 12 to 18 inches in from sides of aggregate bed. Spacing between laterals is 24 to 36 inches, 36 is preferred.

Lateral diameter is based on the length of laterals:
25 feet or less = 1 inch

Over 25 feet up to 40 feet $=1 \frac{1}{4}$ inches
Over 40 feet up to 55 feet $=1 \frac{1}{2}$ inches
Lateral diameter \qquad

Number of laterals \qquad
Length of one lateral \qquad
Total length of laterals \qquad
Hole spacing is 3 feet on center
Hole size is $1 / 4$ inch
The last hole is drilled in the upper half of the end cap.
Number of holes per lateral $=($ lateral length -1.5$) \div 3+X$
$X=1$ when the decimal is less than .5 and $X=2$ when the decimal is .5 or greater
Example 1: lateral length is 47 ft , so $(47-1.5) \div 3=15.17, .17$ is less than .5 so the number of holes is $15+1$ or 16 per lateral

Example 2: lateral length is 48 ft , so ($48-1.5$) $\div 3=15.5$, the number of holes is $15+2$ or 17 per lateral

Number of holes per lateral= \qquad x Number of laterals \qquad $=$ \qquad total holes

Total Holes \qquad $\times 1.28 \mathrm{gpm}$ through a $1 / 4$ inch hole $=$ \qquad gpm flow rate(total discharge rate)

Delivery Line

Delivery line diameter is selected using the friction loss chart in the state rule. The chart lists velocity (v) and friction loss head (H_{f}) for a given flow (gpm) in each diameter of pipe in the chart. You must use a diameter pipe that produces a velocity of at least $\mathbf{2}$ fps for your flow
rate. This velocity provides scouring action to help keep the delivery line clean. Velocities above 5 fps should be avoided.

Diameter of delivery line \qquad
Length of delivery line \qquad THIS VALUE IS USED AGAIN LATER IN THE DOSING CHAMBER SECTION

Manifold Diameter

5 bedrooms (750 gpd) or less requires a 2 inch diameter manifold
Over 5 bedrooms the manifold must be the same diameter as the delivery line or 2 inches whichever is greater.

Manifold diameter you will be using \qquad Manifold length \qquad
Fitting Schedule

Fitting	A. Quantity of each type and size used.	B. Equivalent Pipe Length from chart in state rule or manufacturer specs	C. Total equivalent pipe length for each fitting type and size. Multiply A x B
$\Rightarrow+64-: 90^{\circ}$ elbow, standard sharp	$\begin{aligned} & 2^{\prime \prime}-3 \\ & 3^{\prime \prime}-1 \end{aligned}$	$\begin{aligned} & 2^{\prime \prime}=8.6 f t \\ & 3^{\prime \prime}=11.1 f t \end{aligned}$	$\begin{aligned} & 3 x 8.6=25.8 f t \\ & 1 x 11.1=11.1 f t \end{aligned}$
90° elbow, standard sharp			
90° elbow long sweep radius			
45° elbow standard			
Tee - use branch flow value			Multiply AxBx2 to account for both branches of Tee

Gate Valve			
Male/female adapter			
Check valve			
Union/cam lock			
		Grand Total of column C This is the equivalent length of pipe added on the delivery line length due to the friction loss of the fittings.	

Add the grand total of equivalent pipe length to the actual length. of the delivery line to calculate total friction loss.

Delivery line length \qquad $\mathrm{ft}+$ equivalent length \qquad $\mathrm{ft}=$ \qquad ft of pipe total

Find friction loss factor in chart in state rule. $\mathrm{H}_{\mathrm{f}}=$ \qquad
Total ft of pipe \qquad $\div 100 \times \mathrm{H}_{\mathrm{f}}=$ feet of friction loss in the delivery line.

Total Design Head

A. Friction loss in delivery line \qquad ft
B. Elevation difference (pump to manifold) \qquad ft
C. System design head \qquad 3_ff
D. If using a pressure filter include head loss here \qquad ft
(Value supplied by Manufacturer) SimTech filter is 0.5 ft
Total design head $=A+B+C+D$ \qquad ft

Pump Sizing

Pump sizing criteria

1. Total design head \qquad ft
2. Total discharge rate \qquad gpm

Plot this design point on the pump curve. It must be below (to the left of the curve).

Effluent Pump Performance Gurve

$\Rightarrow+6<-3$.

The design point is 12 feet of head and a total discharge rate of 32 gpm . Draw a line from the origin $(0,0)$ through the design point to the pump curve. The line should cross the curve in the middle $\mathbf{1 / 3}$ for optimum efficiency and pump life. Draw a line straight down from the point where this line crosses the curve (represented by the dotted line). The difference between the dotted line and total discharge rate of the system should be at least a 10% difference, but not more than 20 gpm .

Pump's make, model
Pump performance curve included with plan \square
3@AB=3nly effluent, sewage or grinder pumps may be used.

Dosing Chamber

The dose volume for an elevated sand mound is $1 / 4$ of the daily design flow plus the drain back volume from the delivery line, if it drains back to the tank.

Daily design flow equals the number of bedrooms \qquad $\times 150$ gallons per day= \qquad gpd Length of delivery line \qquad ft x \qquad gallons per foot of pipe (found in chart in state rule)= \qquad gallons drain back from delivery líne.

Daily design flow \qquad $-4+$ \qquad drain back= \qquad total dose volume

You must know the gallons per inch in the dowing chamber (from manufacturer) to calculate how many inches the pump float must travel from the on to off positions to dose the correct volume.

Total dose volume \qquad \div \qquad gallons per inch in dosing chamber = \qquad inches travel from pump on to pump off.

All electrical connections will be made in a NEMA 4X junction box. \qquad
It is preferred that the junction box be outside the riser and that it is not directly connected to any conduit that extends into the riser. All openings into riser must be made gas and moisture tight.

Dosing chamber will have a riser to surface.
Dosing Chamber will have audio and visual alarm.

Perimeter Drain

Depth of perimeter drain \qquad inches

Perimeter drain outfall
On lot to ground surface (elevations included on plan)
To field tile discharging off lot (elevations and legal easements included) \square

Plans

A scale drawing of the proposed mound system including all applicable worksheet items, bird's eye view, cross sectional view, and required ground surface elevations is included.

The four corners of the mound are staked/flagged and the mound and dispersal area is fenced and ready for a site review.

Useful Tables from State Rule

Table X - Plastic Pipe Fittings: Friction Loss - Equivalent Leng th of Straight Pipe (ft.) ${ }^{*}$							
Fitting:	$1{ }^{\prime \prime}$	$11 / 4^{\prime \prime}$	$11 / 2^{\prime \prime}$	$2^{\prime \prime}$	$21 / 2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$
90° e lbow, standard sharp, inside radius	5.3	6.7	7.5	8.6	9.3	11.1	13.1
90° e loow, long sweep radius	2.5	3.8	4.0	5.7	6.9	7.9	12.0
45° e lbow, standard	1.4	1.8	2.1	2.6	3.1	4.0	5.1
Tee Flow (run flow)	1.7	2.3	2.7	4.3	5.1	6.2	8.3
Tee Flow (branch flow)	6.0	7.0	8.0	12.0	15.0	16.0	22.0
Gate Valve	0.6	0.8	1.0	1.5	1.6	2.0	3.0
Male/Female adapter	2.0	2.8	3.5	4.5	5.5	6.5	9.0

*Assigned values. Other values for friction los maybe used if doc umentation from the pipe manufacturer is provided with the plan submittal.

Table XII - Pipe Volume for Various Diameter Pipes (gal/ft)						
Pipe Diameter (in)	1	$11 / 4$	$11 / 2$	2^{*}	3^{*}	4^{*}
Volume (gal/ft)	.045	.078	.106	.174	.384	.650

*These diameters and pipe volumes are for calculating the total volume of the effluent force main. They are not used for calculating volumes of pressure distribution laterals.

Table IX - Friction Losses in Plastic Pipe (per 100 feet of pipe) Pipe Diameter, Flow (gpm), Velocity (v) ${ }^{2}$, and Friction Loss Head $\left(\mathrm{H}_{f}\right)^{1}$														
$\begin{aligned} & \hline \text { Fow } \\ & \text { (g } \mathrm{gm} \text {) } \end{aligned}$	1"		11/4"		11/2"		$2^{2 \prime}$		21/2"		3"		4"	
Q	v	H_{r}												
1	0.37	0.11												
2	0.74	0.38	0.43	0.10										
3	1.11	0.78	0.64	0.21	0.47	0.10								
4	1.49	1.31	0.86	0.35	0.63	0.16								
5	1.86	1.92	1.07	0.52	0.79	024								
6	2.23	2.70	129	0.71	0.95	033	0.57	0.10						
8	2.97	4.59	1.72	1.19	1.26	0.56	0.77	0.17						
10	3.71	6.90	2.15	1.78	1.58	0.83	0.96	0.25	0.67	0.11				
15	5.57	14.7	322	3.76	2.37	1.74	1.43	0.52	1.01	0.22				
20	7.43	252	429	6.42	3.16	296	1.91	87	134	0.37	0.87	0.13		
25	9.28	38.6	537	9.74	3.94	4.46	2.39	1.29	168	0.54	1.09	0.19		
30			6.44	13.6	4.73	627	2.87	1.81	2.01	0.76	1.30	026		
35			751	18.2	5.52	8.40	3.35	2.42	235	1.01	1.52	035	0.88	0.10
40			859	23.6	6.30	10.7	3.83	3.12	2.68	1.28	1.74	0.44	1.01	0.12
45					7.09	13.5	4.30	3.85	3.02	1.54	1.95	0.55	1.13	0.15
50					7.88	16.5	4.78	4.68	335	1.93	2.17	0.67	1.25	0.18
60					9.47	23.6	5.74	6.62	4.02	2.72	2.60	0.94	1.51	0.25
70							6.70	8.86	469	3.67	3.04	125	1.76	0.33
80							7.65	115	536	4.69	3.47	159	2.02	0.42
90							8.60	143	6.03	5.83	3.91	199	2.27	0.52
100									6.70	7.13	4.34	2.42	2.52	0.63
125									838	10.9	5.43	3.72	3.15	0.96
150											6.51	5.16	3.78	1.34
175											7.60	690	4.41	1.79
200											8.68	893	5.04	2.27
225													5.67	2.84
250													6.30	3.37
275													6.93	4.13
300													7.56	4.87
325													8.19	5.70

${ }^{1}$ This figure is based on flows for PVC Schedule 40 pipe (flow coefficiert: C-150). Other vabues for friction loss may be used if documertation from the pipe manufacturer is provided with the plan sub ruittal. Caloulations using the Hazer-Williams equation maybe used if provided with the plan subruittal.
${ }^{2}$ Flow welocitymoust be at least $2 \mathrm{fp}^{6}$; flow welocities abore 5 fp should be avoided.

| MAXIMUM AGGREGATE BED WIDTH |
| :---: | :---: |
| (BED LENGTH) |
| All values calculated using formula in 410 IAC 6-8.3 |

NUMBER OF BEDROOMS	600 SQ. FT. PER BEDROOM	300 SQ. FT. PER BEDROOM	250 SQ. FT. PER BEDROOM
2	4 FT. $(62.5 \mathrm{FT})$.	5 FT. (50 FT.)	6 FT. $(42 \mathrm{FT})$.
3	5 FT. $(75 \mathrm{FT})$.	7 FT. $(54 \mathrm{FT})$.	7 FT. $(54 \mathrm{FT})$.
4	5 FT. $(100 \mathrm{FT})$.	8 FT. $(62.5 \mathrm{FT})$.	9 FT. $(555.5 \mathrm{FT})$.
5	6 FT. $(104 \mathrm{FT})$.	9 FT. $(70 \mathrm{FT})$.	10 FT. $(62.5 \mathrm{FT})$.
6	7 FT. $(107 \mathrm{FT})$.	10 FT. $(75 \mathrm{FT})$.	11 FT. $(69 \mathrm{FT})$.

